Metabolic Alterations Caused by KRAS Mutations in Colorectal Cancer Contribute to Cell Adaptation to Glutamine Depletion by Upregulation of Asparagine Synthetase12
نویسندگان
چکیده
A number of clinical trials have shown that KRAS mutations of colorectal cancer (CRC) can predict a lack of responses to anti-epidermal growth factor receptor-based therapy. Recently, there have been several studies to elucidate metabolism reprogramming in cancer. However, it remains to be investigated how mutated KRAS can coordinate the metabolic shift to sustain CRC tumor growth. In this study, we found that KRAS mutation in CRC caused alteration in amino acid metabolism. KRAS mutation causes a marked decrease in aspartate level and an increase in asparagine level in CRC. Using several human CRC cell lines and clinical specimens of primary CRC, we demonstrated that the expression of asparagine synthetase (ASNS), an enzyme that synthesizes asparagine from aspartate, was upregulated by mutated KRAS and that ASNS expression was induced by KRAS-activated signaling pathway, in particular PI3K-AKT-mTOR pathway. Importantly, we demonstrated that KRAS-mutant CRC cells could become adaptive to glutamine depletion through asparagine biosynthesis by ASNS and that asparagine addition could rescue the inhibited growth and viability of cells grown under the glutamine-free condition in vitro. Notably, a pronounced growth suppression of KRAS-mutant CRC was observed upon ASNS knockdown in vivo. Furthermore, combination of L-asparaginase plus rapamycin markedly suppressed the growth of KRAS-mutant CRC xenografts in vivo, whereas either L-asparaginase or rapamycin alone was not effective. These results indicate ASNS might be a novel therapeutic target against CRCs with mutated KRAS.
منابع مشابه
ارزیابی فراوانی جهشهای ژن KRAS در بیماران ایرانی مبتلا به سرطان کولورکتال
Background: Kirsten rat sarcoma (KRAS) gene is a target of genetic alterations which are diagnostic and prognostic biomarkers in patients with metastatic colorectal cancer who are treated with monoclonal anti-EGFR antibodies such as cetuximab and panitumumab. KRAS mutations are seen in 35-42% of patients with colorectal cancer. The high frequency of these mutations in colorectal cancer represen...
متن کاملKRAS and BRAF mutations in Iranian colorectal cancer patients: A systematic review and meta-analysis
Background: Mutations in the EGFR signaling pathway play an important role in the development of colorectal cancer (CRC). Mutations in these genes, like KRAS and BRAF, affect the treatment strategies and associated with poor prognosis and relative resistance to anti-EGFR therapies. Our aim was to conduct a systematic and meta-analysis on all studies that have been conducted on the prevalence of...
متن کاملLC-MS-based metabolomics revealed SLC25A22 as an essential regulator of aspartate-derived amino acids and polyamines in KRAS-mutant colorectal cancer
SLC25A22, which encodes the mitochondrial glutamate transporter, is overexpressed in colorectal cancer (CRC) and is essential for the proliferation of CRC cells harboring KRAS mutations. However, the role of SLC25A22 on metabolic regulation in KRAS-mutant CRC cells has not been comprehensively characterized. We performed non-targeted metabolomics, targeted metabolomics and isotope kinetic analy...
متن کاملClinical Role of ASCT2 (SLC1A5) in KRAS-Mutated Colorectal Cancer
Mutation in the KRAS gene induces prominent metabolic changes. We have recently reported that KRAS mutations in colorectal cancer (CRC) cause alterations in amino acid metabolism. However, it remains to be investigated which amino acid transporter can be regulated by mutated KRAS in CRC. Here, we performed a screening of amino acid transporters using quantitative reverse-transcription polymeras...
متن کاملOncogenic KRAS and BRAF Drive Metabolic Reprogramming in Colorectal Cancer.
Metabolic reprogramming, in which altered utilization of glucose and glutamine supports rapid growth, is a hallmark of most cancers. Mutations in the oncogenes KRAS and BRAF drive metabolic reprogramming through enhanced glucose uptake, but the broader impact of these mutations on pathways of carbon metabolism is unknown. Global shotgun proteomic analysis of isogenic DLD-1 and RKO colon cancer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2016